\begin{tabbing} read{-}restricted($R$; $i$; $y$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=case $R$ of \+ \\[0ex]Rnone =$>$ false$_{2}$ \\[0ex]Rplus(${\it left}$,${\it right}$)=$>$${\it rec}_{1}$,${\it rec}_{2}$.${\it rec}_{1}$ $\vee_{2}$ ${\it rec}_{2}$ \\[0ex]Rinit(${\it loc}$,$T$,$x$,$v$)=$>$ false$_{2}$ \\[0ex]Rframe(${\it loc}$,$T$,$x$,$L$)=$>$ false$_{2}$ \\[0ex]Rsframe(${\it lnk}$,${\it tag}$,$L$)=$>$ false$_{2}$ \\[0ex]Reffect(${\it loc}$,${\it ds}$,${\it knd}$,$T$,$x$,$f$)=$>$ false$_{2}$ \\[0ex]Rsends(${\it ds}$,${\it knd}$,$T$,$l$,${\it dt}$,$g$)=$>$ false$_{2}$ \\[0ex]Rpre(${\it loc}$,${\it ds}$,$a$,$T$,$P$)=$>$ false$_{2}$ \\[0ex]Raframe(${\it loc}$,$k_{1}$,$L$)=$>$ false$_{2}$ \\[0ex]Rbframe(${\it loc}$,$k_{1}$,$L$)=$>$ false$_{2}$ \\[0ex]Rrframe(${\it loc}$,$x$,$L$)=$>$ ${\it loc}$ = $i$ $\wedge_{2}$ $x$ = $y$ \- \end{tabbing}